
ECE 604, Lecture 10

September 27, 2018

1 Introduction

In this lecture, we will cover the following topics:

• Time-Harmonic Fields—Linear Systems

• Fourier Transform Technique

• Complex Power

Additional Reading:

• Prof. Dan Jiao’s lecture notes 7.

• Sections 3.11, 3.12, 3.13, Ramo et al.

Printed on October 8, 2018 at 22 : 44: W.C. Chew and D. Jiao.
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2 Time-Harmonic Fields—Linear Systems

The analysis of Maxwell’s equations can be greatly simplified by assuming the
fields to be time harmonic, or sinusoidal (cosinusoidal). Electrical engineers use
a method called phasor technique to simplify equations involving time-harmonic
signals. This is also a poor-man’s Fourier transform. That is one begets the
benefits of Fourier transform technique without knowledge of Fourier transform.
Since only a time-harmonic frequency is involved, this is also called frequency
domain analysis.1

To learn phasor techniques, one makes use the formula due to Euler (1707–
1783)

ejα = cosα+ j sinα (2.1)

where j =
√
−1 is an imaginary number. But lo and behold, in other disciplines,√

−1 is denoted by “i”, but “i” is too close to the symbol for current. So the
preferred symbol for electrical engineering for an imaginary number is j: a
quirkness of convention, just as positive charges do not carry current in a wire.

From Euler’s formula one gets

cosα = <e(ejα) (2.2)

Hence, all time harmonic quantity can be written as

V (x, y, z, t) = V ′(x, y, z) cos(ωt+ α) (2.3)

= V ′(r)<e(ej(ωt+α)) (2.4)

= <e
(
V ′(r)ejαejωt

)
(2.5)

= <e
(
V˜ (r)ejωt

)
(2.6)

Now V˜ (r) = V ′(r)ejα is a complex number called the phasor representation of

V (r, t) a time-harmonic quantity.2 Consequently, any component of a field can
be expressed as

Ex(x, y, z, t) = Ex(r, t) = <e[E˜x(r)ejωt] (2.7)

The above can be repeated for y and z components. Compactly, one can write

E(r, t) = <e[E˜(r)ejωt] (2.8)

H(r, t) = <e[H˜ (r)ejωt] (2.9)

1It is simple only for linear systems: for nonlinear systems, such analysis can be quite
unwieldy. But rest assured, as we will not discuss nonlinear systems in this course.

2We will use under tilde to denote a complex number or a phasor here, but this notation
will be dropped later. Whether a variable is complex or real is clear from the context.
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where E˜ and H˜ are complex vector fields. Such phasor representations of time-
harmonic fields simplify Maxwell’s equations. For instance, if one writes

B(r, t) = <e
(
B˜ (r)ejωt

)
(2.10)

then

∂

∂t
B(r, t) =

∂

∂t
<e[B˜ (r)ejωt]

= <e
(
∂

∂t
B(r)jωejωt

)
= <e

(
B(r)jωejωt

)
(2.11)

Therefore, given Faraday’s law that

∇×E = −∂B
∂t
−M (2.12)

assuming that all quantities are time harmonic, then

E(r, t) = <e[E˜(r)ejωt] (2.13)

M(r, t) = <e[M˜(r)ejωt] (2.14)

using (2.11), and (2.14), into (2.12), one gets

∇×E(r, t) = <e[∇×E˜(r)ejωt] (2.15)

and that

<e[∇×E˜(r)ejωt] = −<e[B˜ (r)jωejωt]−<e[M˜(r)ejωt] (2.16)

Since if

<e[Aejωt] = <e[B(r)ejωt], ∀t (2.17)

then A = B, it must be true from (2.16) that

∇×E(r) = −jωB(r)−M(r) (2.18)

Hence, finding the phasor representation of an equation is clear: whenever we
have ∂

∂t , we replace it by jω. Applying this methodically to the other Maxwell’s
equations, we have

∇×H˜ (r) = jωD˜ (r) + J˜(r) (2.19)

∇ ·D˜ (r) = %e(r) (2.20)

∇ ·B˜ (r) = %m(r) (2.21)
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3 Fourier Transform Technique

In the phasor representation, Maxwell’s equations has no time derivatives; hence
the equations are simplified. We can also arrive at the above simplified equations
using Fourier transform technique. To this end, we use Faraday’s law as an
example. By letting

E(r, t) =
1

2π

∞ˆ

−∞

E(r, ω)ejωtdω (3.1)

B(r, t) =
1

2π

∞ˆ

−∞

B(r, ω)ejωtdω (3.2)

M(r, t) =
1

2π

∞ˆ

−∞

M(r, ω)ejωtdω (3.3)

Substituting the above into Faraday’s law given by (2.12), we get

∇×
∞ˆ

−∞

dωejωtE(r, ω) = − ∂

∂t

∞ˆ

−∞

dωejωtB(r, ω)−
∞ˆ

−∞

dωejωtM(r, ω) (3.4)

Using the fact that

∂

∂t

∞ˆ

−∞

dωejωtB(r, ω) =

∞ˆ

−∞

dω
∂

∂t
ejωtB(r, ω) =

∞ˆ

−∞

dωejωtjωB(r, ω) (3.5)

and that

∇×
∞ˆ

−∞

dωejωtE(r, ω) =

∞ˆ

−∞

dωejωt∇×E(r, ω) (3.6)

Furthermore, using the fact that

∞ˆ

−∞

dωejωtA(ω) =

∞ˆ

−∞

dωejωtB(ω), ∀t (3.7)

implies that A(ω) = B(ω), and using (3.5) and (3.6) in (3.4), and the property
(3.7), one gets

∇×E(r, ω) = −jωB(r, ω)−M(r, ω) (3.8)

These equations look exactly like the phasor equations we have derived pre-
viously, save that the field E(r, ω), B(r, ω), and M(r, ω) are now the Fourier
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transforms of the field E(r, t), B(r, t), and M(r, t). Moreover, the Fourier trans-
form variables can be complex just like phasors. Repeating the exercise above
for the other Maxwell’s equations, we obtain equations that look similar to those
for their phasor representations. Hence, Maxwell’s equations can be simplified
either by using phasor technique or Fourier transform technique.

4 Complex Power

Consider now that in the phasor representations, E˜(r) and H˜ (r) are complex
vectors, and their cross product, E˜(r)×H˜ ∗(r), which still has the unit of power
density, has a different physical meaning. First, consider the instantaneous
Poynting’s vector

S(r, t) = E(r, t)×H(r, t) (4.1)

where all the quantities are real valued. Now, we can use phasor technique to
analyze the above. Assuming time-harmonic fields, the above can be rewritten
as

S(r, t) = <e[E˜(r)ejωt]×<e[H˜ (r, )ejωt]

=
1

2
[E˜ejωt + (E˜ejωt)∗]× 1

2
[H˜ ejωt + (H˜ ejωt)∗] (4.2)

where we have made use of the formula that

<e(Z) =
1

2
(Z + Z∗) (4.3)

Then more elaborately, on expanding (4.2), we get

S(r, t) =
1

4
E˜ ×H˜ e2jωt +

1

4
E˜ ×H˜ ∗ +

1

4
E˜∗ ×H˜ +

1

4
E˜∗ ×H˜ ∗e−2jωt (4.4)

Then rearranging terms and using (4.3) yield

S(r, t) =
1

2
<e[E˜ ×H˜ ∗] +

1

2
<e[E˜ ×H˜ e2jωt] (4.5)

where the first term is independent of time, while the second term is sinusoidal
in time. If we define a time-average quantity such that

Sav = 〈S(r, t)〉 = lim
T→∞

1

T

ˆ T

0

S(r, t)dt (4.6)

then it is quite clear that the second term of (4.5) time averages to zero, and

Sav = 〈S(r, t)〉 =
1

2
<e[E˜ ×H˜ ∗] (4.7)
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Hence, in the phasor representation, the quantity

S˜ = E˜ ×H˜ (4.8)

is termed the complex Poynting’s vector. The power flow associated with it is
termed complex power.

Figure 1:

To understand what complex power is , it is fruitful if we revisit complex
power in our circuit theory course. The circuit in Figure 1 can be easily solved
by using phasor technique. The impedance of the circuit is Z = R+jωL. Hence,

V˜ = (R+ jωL)I˜ (4.9)

Just as in the electromagnetic case, the complex power is taken to be

P˜ = V˜I˜∗ (4.10)

Pinst(t) = V (t)I(t) (4.11)

As shall be shown below, it is quite easy to that

Pav = 〈Pinst(t)〉 =
1

2
<e[P˜ ] (4.12)

where Pinst is the instantaneous power. It is clear that if V (t) is sinusoidal, it
can be written as

V (t) = V0 cos(ωt) = <e[V˜ejωt] (4.13)

where we assume that V˜ = V0. Then from (4.9), it is clear that V (t) and I(t)
are not in phase. Namely that

I(t) = I0 cos(ωt+ α) = <e[I˜ejωt] (4.14)

where I˜ = I0e
jα. Then

Pinst(t) = V0I0 cos(ωt) cos(ωt+ α)

= V0I0 cos(ωt)[cos(ωt) cos(α)− sin(ωt) sinα]

= V0I0 cos2(ωt) cosα− V0I0 cos(ωt) sin(ωt) sinα (4.15)
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It can be seen that the first term does not time-average to zero, but the second
term does. Now taking the time average of (4.15), we get

Pav = 〈Pinst〉 =
1

2
V0I0 cosα =

1

2
<e[V˜I˜] (4.16)

=
1

2
<e[P˜ ] (4.17)

On the other hand,

Preactive =
1

2
=m[P ] =

1

2
=m[V0I0e

jα] =
1

2
V0I0 sinα (4.18)

One sees that amplitude of the time-varying term in (4.15) is precisely propor-
tional to =m[P˜ ].

The reason for the existence of imaging part of P˜ is because V (t) and I(t)

are out of phase or V˜ = V0, but I˜ = I0e
jα. The reason why they are out of

phase is because the circuit has a reactive part to it. Hence the imaginary part
of complex power is also called the reactive power. In a reactive circuit, the plot
of the instantaneous power is shown in Figure 2.

Figure 2:
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